I’m so fly, I’m #NoFly!

#NoFly: Walking the talk on climate change, by Shaun Hendy. BWB Texts, 2019. Reviewed by Robert McLachlan

In June 2018, Swede Maja Rosén founded We stay on the ground with a pledge not to fly in 2019, and a goal of persuading 100,000 other Swedes to join her. In August, her compatriot Greta Thunberg began her school strike for climate. 

Today, the No Fly movement has spread around the world, with the Flight Free 2020 campaign reaching eight countries, and Greta is a household name, with the September strikes drawing 4 million people globally. What a difference a year makes!

The New Zealand scientist Shaun Hendy made his own flight-free year in 2018, attracting widespread publicity in the media, partly thanks to Stuff‘s “Quick! Save the Planet” series. In #NoFly he describes why he made the pledge, how it worked out, and how he sees New Zealand’s low-carbon future playing out.

Shaun credits University of Auckland psychology professor Quentin Atkinson for giving him the push he needed. The theory of “costly signalling” says that people can better send honest signals about themselves if their message is accompanied by taking some action that requires effort. (Philanthropy, risk-taking, and conspicuous consumption are the classic examples.) Indeed, psychological studies have found, not surprisingly, that people strongly dislike hypocrisy and regard hypocrites as untrustworthy (whereas lying, strangely enough, is all right). 

This is a very short book with just four short, tightly-organized chapters. Chapter 1 describes Shaun’s actual experience of travelling around New Zealand by train, bus, and electric car. He succeeded, and enjoyed a lot of the trips, but, needless to say, he finds that we need a huge improvement in our intercity public transport. Chapter 2 is a whirlwind tour of the discovery of climate change, from the birth of the industrial revolution, to the early speculations about the greenhouse effect by Joseph Fourier in the 1820s, to Svante Arrhenius’s landmark 1896 paper “On the influence of carbonic acid [CO2] in the air upon the temperature of the ground” establishing the basic principles of global warming by the burning of fossil fuels, to its widespread understanding by scientists by the 1980s. (Incidentally, Arrhenius’s second cousin’s great-great-great-granddaughter is Greta Thunberg, and her father, Svante Thunberg, is named after him. How good is that?!) After that, the story turns murky, as emissions have skyrocketed in the past thirty years and we are now faced with the prospect of catastrophic climate change.

There are some New Zealand connections, too, and here I can’t resist including the now-famous report in the Rodney and Otamatea Times of 14 August 1912:

Understanding how this could have happened is the subject of Chapter 3, focussing on scientists’ efforts to communicate the dangers and how this message  was received. Hendy bases his interpretation on Jess Berentson-Shaw’s A Matter of Fact: Talking Truth in a Post-Truth World (BWB Texts, 2018), where it is argued that scientists need to base their messages on values that are shared with their audience. They should be aware of their own values and how they affect the questions that they choose to study and how the results are communicated. For example, Mason Durie’s 2018 Manawatū Lecture contrasted ‘knowledge transfer’ (such as teaching postgraduate students) as a scientific value with ‘community understanding’ as a mātauranga Māori value.

Many, many factors have brought us to where we are now and still prevent decisive action. They include the power of the fossil fuel companies and their disinformation campaigns, the investors who fund the expansion of fossil fuels and the machines than burn them, our inherent short-term bias – particularly evident in some democracies –, the apparent advantages of freeloading, and the rise of neoliberal economic management, all of which are symptoms of an underlying global tragedy of the commons. On top of this, politics and social media have taken such a bizarre turn in recent years that academics and thinkers of all stripes are scrambling to make sense of the developments and to suggest solutions. 

Apart from the psychology of communication and belief formation, behavioural psychology and sociology could well be places to look for answers too. People live in suburbs, drive cars everywhere, and holiday on the Gold Coast because everyone around them is doing it, and because those were the obvious choices. A lot of climate work focuses on the top level (government and international policy) and the bottom level (individual action). The middle levels, communities, organizations, and their networks, are surely important too. Climate change will only be solved by collective action. It is important to understand how collective action – a complex interplay between government leadership, public support, and civic organizations – is achieved.

Chapter 4 closes with a vision of a low-carbon future for New Zealand, involving denser cities, less travel, and improved (and low-carbon) vehicles and public transport. Unfortunately, tiny steps in this direction are not going to get us there in time.

Emissions are rising rapidly. Hendy’s numbers for aviation are a bit out of date: while domestic aviation emissions are flat (due to more efficient aeroplanes), international emissions are sharply up.

Annual gross New Zealand emissions. Aviation figures include the effects of radiative forcing at 1.9 times the CO2 emissions. International aviation includes outgoing flights only. Source: MfE

Globally, it’s the same story, with air travel up 77% in eight years, now standing at 1000 km per person per year:

Source: International Civil Aviation Organization

Hendy rightly places a lot of emphasis on how New Zealand families are now widely dispersed around the world, and the value of (some) work travel. However, for both residents and visitors,  friends and family are the reason for 28% of trips; work, education, and conferences are 15%. Holidays make up 57% of all trips. The same is true globally where work trips are a tiny portion of all flying. Unprecedented levels of migration are creating more dispersed families. And all projections are for continued rapid increases.

Land transport emissions are also rising sharply as the country is flooded with cars – we now have the highest vehicle ownership rate in the OECD. Despite all the media coverage of electric vehicles, the fact is that the petrol and diesel fleet is increasing by around 140,000 vehicles per year. It’s going to take some time, some strong measures, and some major shifts in public opinion to turn this around.

On aviation, it’s true that there are no easy solutions. We have to start with baby steps, and to my mind the most urgent of these is to bring international aviation into the Emissions Trading Scheme. Domestic flights pay a carbon charge, international ones do not. At present prices, an Auckland–Brisbane return flight (1 tonne CO2e) would cost an extra $25. Not much, and not much of a deterrent, but the point is it would bring these emissions under the falling cap on emissions that the Zero Carbon Bill will bring in. 

Collins crushes climate

By Robert McLachlan

An essay by Judith Collins MP reported on Carbon News yesterday seems to show an alarming shift in attitude within the National Party. Collins argues against the Zero Carbon Bill, the Paris Agreement, and downplays the magnitude of climate impacts.

The Paris Agreement was adopted in December 2015 and ratified by the New Zealand Government, of which Judith Collins was a cabinet member, in October 2016. This involved agreeing to strengthen the global response to the threat of climate change by

Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change.

The Zero Carbon Bill implements this agreement for New Zealand. It implements what the National-led government agreed to when they signed the Paris Agreement, which Judith Collins now states “is not justified by any scientific findings” – this after innumerable scientists and delegates, including those of the New Zealand government, pored over and agreed to every word. Since the Agreement was signed, the IPCC 1.5ºC report – “1.5 to Stay Alive” – has strengthened the case for 1.5ºC. There is a broad consensus, both in New Zealand and internationally, about what needs to be done. Contrary to what Collins claims, the NZ emission target does not have “almost zero chance of being achieved”; it is entirely feasible and will lead to health and economic benefits for all New Zealanders. 

As for “there is no indication they [the costs of global warming] are insurmountable”, it partly depends on what value you place on mass extinction and the loss of treasures like the Great Barrier Reef, not to mention coastal cities. How can this be surmounted?

The existential risks are real if difficult to size up. Hans Schellnhuber, founder of the Potsdam Institute for Climate Impact Research and climate advisor to the EU, Angela Merkel, and the Pope, said in 2018, “I think there is a very very big risk that we will just end our civilisation. The human species will survive somehow, but we will destroy almost everything we have built up over the last two thousand years. I think we have more than a five percent chance of [preventing this]. But it’s definitely less than 50% in my view.”

If Ms Collins believes “any politician… who questions global warming policy instantly being ostracised as the equivalent as a global warming ‘denier’”, she would be well advised not to include statements like “assuming the IPCC models reflect the relationship between carbon dioxide and global warming” in her essay. Certainly 600 commenters interpreted her post as support for a science denial position, with everything from sunspots, Noah’s Ark, volcanoes, Al Gore, change is normal, plants need CO2, to the ice caps on Mars getting an outing.

The faster we cut emissions, the slower the impacts of climate change will be, and the easier it will be to adapt. The mechanisms in the Zero Carbon Bill constitute a tested, measured, and reasonable way to do this.

Originally published on Carbon News. See the original article.

Hopped out

By Steve Trewick

Stand at the side of a mainland island reserve and the impact of humans on New Zealand’s natural environment is obvious. From a landscape naturally dominated by tall forest, agricultural ‘improvement’ rapidly moved us to a uniform, virtual biological desert. Not only are the trees and birds missing, but the lichens, fungi, insects, worms and molluscs are gone. Even the bacteria and other microbes of the soil are replaced. In response we resort to counting species and prioritising conservation efforts on the scarcest and restoration effort on the rarest habitats. But, wholesale environmental changes alter not just the abundance of native species but their ecology and interactions. Ultimately, by restructuring the landscape we alter evolutionary outcomes and this has become increasing apparent as research explores biological responses to human induced climate change.

Predator fence on boundary of native forest and exotic paddock. Bushy Park sanctuary near Wanganui.

An obvious difficulty with understanding environmental change is that it is much easier to say what is, compared to what was. We are readily inured to the situation and so are accepting of the status quo. One very powerful tool that has helped biologists understand how the geographic ranges of species and population change over time is phylogeography. Simply put, this approach combines information about where individuals and populations of a species are found with information about how those individuals are related to each other. DNA sequence data reveals how closely related individuals are (their genealogy), and how genetically diverse populations are. It is this type of data that shows, for instance, how our human ancestors left Africa and migrated into Europe, then Asia before eventually colonising islands in Oceania. We now know that New Zealand was probably the last major island to have be reached by people travelling by foot and finally boat.

Genetic data from living people has revealed how their ancestors migrated from Africa around the world (values are years before present).

Since the 1990’s phylogeographic studies have revealed the influence of many environmental factors on the distribution of biodiversity. In particular, natural, global climate cycling during the last few million years of Earth’s geophysical prehistory (the Pleistocene epoch) is known to have been influential. We now know for example that in the northern hemisphere repeated extension of the arctic ice cap during ‘glacial’ episodes extinguished populations of all species in northern Europe, Asia and America; remnant populations survived in warmer southern areas. As climate alternately warmed and cooled over 10–100 thousand year cycles, the ranges of animal and plant species expanded and retracted in response.

Estimated distribution of vegetation types in New Zealand during the Last Glacial Maximum. See Wild Life New Zealand.

In New Zealand a related pattern of species range change has been inferred. Pollen records show where plant species once lived and genetic data show that during cold phases of the Pleistocene, forest reduced and was replaced in many areas by scrub / grassland communities. Animal species are expected to have responded to these changes tracking their preferred habitat in space and time (or going extinct), and this has been found to be the case for some. North Island tree wētā, for instance, appear to have tracked climate niche.

A recent study examined the response of two related grasshopper species. These endemic Phaulacridium grasshoppers live in low elevation habitat, but as is typical of short-horn grasshoppers in temperate regions they require open habitat so they can gain heat by basking in the sun. That means Phaulacridium grasshoppers do not live in forest, and they do not survive above the treeline in the subalpine zone where cool temperatures prevent trees growing (other grasshoppers are adapted to those conditions). So space for Phaulacridium would have been restricted in prehuman New Zealand to scarce open areas such as coastal dunes, river flats, wetlands and semi-arid areas.  In fact, one species (Phaulacridium otagoense) occurs today only in the semi-arid McKenzie – Alexandra area of Central Canterbury and Otago. The other  species (Phaulacridium marginale) is today found in many places around the country.

Vegetation types across New Zealand before arrival of people (left) and in modern times (right).
Known occurrences of the two New Zealand Phaulacridium grasshoppers.

A small species range usually means a small population size, compared to a species with a big range; and small populations usually have a lower level of genetic variation. Low genetic diversity is documented in many endangered species such as the famous black robins of the Chatham Islands. Paradoxically, in Phaulacridium the opposite pattern exists; the species with the smallest range (pink in map) has much higher genetic diversity than the widespread more common species. The simplest explanation is that P. otagoense (pink),  had until recently a much larger range and so bigger population. Conversely, P. marginale (turquoise) appears to have expanded its range recently and has not yet had time to accumulate new genetic diversity.

Niche models for Phaulacridium otagoense indicating optimal habitat (red, orange) during the last glacial phase may have been similar to today.

It is known that global temperatures had recovered from the last cold phase of the Pleistocene by about 15,000 years ago. Perhaps P. otagoense had a much larger range in the period before that when cooler, drier conditions allowed scrub grassland to expand; similar to conditions where it occurs today? Niche modelling indicates that in current conditions the potential range of this species is bigger than the actual range in which it is found, and  taking into account estimated temperatures during the last glaciation suggests that the habitat preferred by this species had not been much more extensive.

So, probably the major change in fortunes for these Phaulacridium species relates mostly to the recent expansion of P. marginale. Climate modelling shows that the range of this species today is close to the potential occupiable range, but there is a problem. Although the climate across much of New Zealand suits this grasshopper, other factors in the environment do not. In particular, the presence of native forest excludes these little grasshoppers because they need to bask in the sun every day to warm up. How has P. marginale become so abundant and widespread?

The answer lies not in global climate change, but in recent anthropogenic changes to the environment much closer to home. By removing New Zealand native forest, humans created a landscape with the climatic conditions to allow P. marginale to increase in abundance and expand its range across the country. The addition of a mix of northern hemisphere grasses and herbs that thrive in this artificially open environment provided the nutrient-rich food for P. marginale. So that’s great! Well no.

Males and females of different species are capable of reproduction when they meet due to anthropogenic habitat change, resulting in loss of diversity. Male Phaulacridium otagoense with female P. marginale.

The increase in available habitat has meant that the spatial range of P. marginale now meets the range of P. otagoense. Where they meet, the grasshoppers makes mistakes when choosing mates resulting in gene flow. Genetic evidence shows that pure P. otagoense remain in only part of their natural ecological range. Genetic mixing is of course part of the natural evolutionary mill, but around the world human activity accelerates the rate at which species meet and interact in new ways. The Anthropocene may come to be characterised by global biological homogenisation and biodiversity loss because these creatures cannot opt out of the mess.

Fly less, Kiwis!

By Robert McLachlan

Something’s happening here:

Climate crisis: ‘We don’t fly to go on holiday now – and it doesn’t cost the earth’ (The Guardian, 10 August 2019)

No-fly zone: Could you give up flying if it meant protecting the planet? (Adventure.com, 21 August 2019)

Travel the world without destroying it (The Conversation, 22 August 2019)

Harry and Meghan tried, but can we really make our flights carbon neutral? (The Observer, 24 August 2019)

Climate change: Should you fly, drive or take the train? (BBC, 24 August 2019)

Cheap, easy and endless: The big lie about plane travel (Sydney Morning Herald, 30 August 2019)

A Future Without Long-Haul Vacations (The Atlantic, 2 September 2019)

In New Zealand, the Facebook group Fly-less Kiwis was formed to focus attention on the need to reduce air travel. Unlike some campaigns, which encourage people to stop flying completely, either for a year or forever, its aim is simply to spread awareness of this issue and to support its members’ decisions to eliminate unnecessary flying.

Aviation accounts for up to 8% of global greenhouse gas emissions. (Other sources put the figure lower, at 2-3%, but this refers to only the direct CO2 emissions, not the total climate impact due to water vapour, nitrous oxides, contrails, and aerosols.) Aviation is growing extremely quickly, up 75% in 8 years:

Source: ICAO

and is projected to rise by 200-360% by 2050:

Source: ICAO 2013

So far, few countries have any measures in place to rein in the growth of aviation. Some flights incur a carbon price (for example, domestic flights in New Zealand and internal flights in the EU). The UK departure charge is partly carbon based – £78 for a long-haul flight. This really is a global issue: New Zealand’s aviation emissions, at 0.8 tonnes CO2/person, are not so different from those of other developed countries.

(To be clear, while aviation is important, it’s not one of the top issues in climate change mitigation, which remain (both in New Zealand and globally) electricity generation, land transport, and economy-wide carbon pricing.)

Paul Callister, a founder of Fly-less Kiwis, writes:

Many of us on this group probably grew up not doing much flying. We used other means if traveling within NZ and even overseas. Then in our midlife we may well have done quite a bit through our work and for leisure. Now we are pulling back or stopping for climate change reasons. But when I mention this issue to many younger people (in hopefully a casual way not a preaching tone) I sense a moment of horror. The middle class amongst them grew up with hyper-mobility. Their first school trip may have been to Vietnam rather than Auckland. They have been to Sydney or the islands half a dozen times and may have been an exchange student in Europe. Even the environmentally committed, who are leading social media campaigns and/or going to protests, cannot easily see a life without flying or reduced flying. So if one looks at a ‘lifetime emissions’ profile, many of us used up our share in midlife, while these young people have already used theirs up. It’s going to be a real challenge for them.

and:

I think we can almost categorise air travel into three broad groups:

1. Vital (air ambulances, disaster relief etc).

2. Important (visiting overseas relatives, going to the occasional overseas scientific conference).

3. Trivial (I would suggest that weddings in Rarotonga, flying all the guests in, would count as that). So you do not worry about the vital group. You work hard to minimise the impact of the important category. And you put in place a whole heap of disincentives for the trivial travel.

One year has made a huge difference in the amount of attention given to aviation and climate change. Let’s make 2020 the year in which awareness turns into action.

Emission impossible?

Everyone knows about climate change and it’s a real drag. All of a sudden most of the things we liked doing are considered wrong. Some people even say we have to give up cars but that’s crazy talk isn’t it?

With around 70 million new cars produced each year around the world and a total of about  1.4 billion cars, trucks and buses in use it could be that there really is an issue. In New Zealand where we know our small population has a small relative contribution to climate change (don’t we?), motorisation rates are among the highest in the world. Our level of vehicle obsession is similar to the USA with around 82 cars per 100 people, so we make a disproportionate contribution of greenhouse gases as a nation with our personal transport decisions. But hey, technology will see us right, right?

It’s sometimes hard to avoid the inference that most new tech is directed towards getting us to buy more stuff, but manufacturers surely recognise the new environment reality and the marketing benefits of getting on board with the new way our planetary systems are heading. Car makers are surely developing vehicles with lower greenhouse gas emissions, because governments around the world have committed to reducing the primary causes of anthropogenic climate change. Besides those commitments, we car buyers are surely exerting our influence by demanding fuel-efficient cars that can save us money on fuel and save the environment. And it seems to work; CO2 emission ratings for new cars are coming down.   

Average CO2 emissions per km from new passenger cars in Europe. Naturally there is lots of variation across models and among countries (reflecting fleet composition), but the encouraging downward trend pre-empted the European emission limit of 130g CO2 per Km set in 2015. Yellow starts show target levels.

It turns out that manufacturers have been extremely responsive to the grown public and commercial pressure for better fuel economy giving us more kilometres per litre and so less pollution per kilometre. The figures that car sales people quote to us are encouraging and certainly allay any anxiety we had about justifying that big, new, shiny vehicle replete with all the extras.

Unfortunately, the official emission performance statistics (so-called type approval) on which we might base our decision of what vehicle to buy, and from which governments might infer success of policies directed at reducing emissions, are misleading. That’s putting it mildly. When you buy a car that that is stated to yield X g of CO2 per kilometre you’d be forgiven for assuming you will be producing about X g of CO2 for each kilometre you drive it.

Let every eye negotiate for itself
And trust no agent, for beauty is a witch
Against whose charms faith melteth into blood.

William Shakespeare: Much Ado About Nothing

Combining data from 14 different sources, from eight countries and more than 1,000,000 light vehicles it is clear that in 2001, the approved emission specifications were about 9% below the real-world situation (above).  That there was a difference is not hugely surprising because the way we drive our cars (compared with the test conditions) has a big effect on how efficient they are in real terms. What is of much, much greater concern is that in subsequent years the discrepancy has got bigger. Overall, by 2017 the difference between approved emission and real world (what happens when you drive) emissions increased steeply to around 45% (ICCT 2017).

Divergence between type-approval and CO2 emissions measured by Spritmonitor.de

One of the contributory data resources considered 148,000 German built passenger cars that came off the production lines between 2001 and 2016. Using three example years and considering the range of emission discrepancy scores from different cars makes the scale of the problem very clear. At the start of the millenium, actual emissions from cars were close to specification, just 7% higher on average. At this time the spread of discrepancy scores (the relative difference between promised and realised emissions) was fairly narrow and included some instances where measured emissions were lower than expected. However, in the years since, the average deviation has increased and so has the range of the scores. In 2016 for example with an average discrepancy of 38%, few cars had measured emission levels the same or less than expected. Some showed a difference between stated and measured emissions of more than 80%.

What has happened? Despite all the commitments to GHG emission reduction (e.g. in NZ) and all the technology under the bonnet of modern cars, we are actually doing worse at managing the problem. Currently the evidence indicates that the official GHG emission values are the source of the discrepancy. It is easy to see why, as the world population becomes increasingly aware of, and justifiably concerned about, anthropogenic climate change, we can imagine that car manufacturers might benefit from ‘optimistic’ emission statistics. Car sales are increasingly likely to reflect GHG emission data, and it is getting easier to find that information.

You will have spotted that the discrepancy between expected and real work emissions might be a curious artefact that hides a positive story. Perhaps emissions in real terms (rather than percentages) are so small that the inaccuracy hardly matters; after all 40% of 1 (0.4) is still smaller than 7% of 10 (0.7). But no, in real terms the official data indicate that, on average, new cars with combustion engines in Europe produced slightly more CO2 per kilometre (118.5 g) in 2017 than in 2016.

Although most manufactures were, officially, meeting the current European target of 130g/km this was a soft target and a long way from the 2021 EU target of 95g/km. If you take into account the mismatch between official CO2  emissions and real-world data, that showed in 2016 an average discrepancy of 45%, the supposedly achieved 118.5g/km translates to 171g/km (on average), which is above the 130g/km target.

So you have to ask yourself: are car manufacturers trying to avert planetary disaster or are they selling stuff? In the end the responsibility falls to us as individuals, and while the reality of our slide toward the operating limits of our world feels like too much to deal with, and the necessity to change your priorities and behaviour feels like somebody is getting one over on you, it is in fact wonderfully liberating. It is, now, not only okay to not follow the crowd, but the socially and environmentally responsible thing to do.

Steve Trewick

View from the UK: Interview with Julia King of the Committee on Climate Change

Julia King (Baroness Brown of Cambridge) is an engineer. An academic career at the University of Cambridge led to senior business and engineering roles at Rolls-Royce. She is an independent member of the House of Lords, chair of the Carbon Trust (a private company that measures, reduces, and certifies carbon emissions), and chair of the adaptation subcommittee of the UK Committee on Climate Change.

The Committee’s annual report to Parliament was released on 10 July 2019 and was widely reported. The following interview with Robert McLachlan was conducted on 8 August 2019.

RM: The UK is often hailed as a leader in cutting emissions. Yet the report says that in the past five years, almost all the progress has been in the power sector; no other sector – transport, buildings, industry, agriculture – has shown progress.

JK: Transport came down a bit in 2008-9, but has now started creeping up again. Buildings have flatlined. They’re the most difficult for us, because of all the gas heating.

Source: Carbon Brief.

RM: So for all the talk of the climate crisis, and all the street protests, we’re not seeing action. Are people ready to take action? Do they realise what needs to be done?

JK: The problem is it has to be led by government, because these are very hard actions for people to take on their own.

One of the the things we asked the Government to do in our Net Zero report in May was that the Treasury should look at how the costs should fall. The problem with homes is that it’s fine for new homes: they only need to tighten up the building regulations. New homes should be so well insulated that you can use heat pumps. In 95% of the country that is perfectly possible. The trouble is that 80% of the homes that we will have in 2050, we already have, and because we have the worst-insulated and possibly worst-built homes in Europe, and also some of the oldest housing stock in Europe – we’re fond of our Victorian terraces – the big challenge is what to do about the 29 million homes we’ve already got. They need triple glazing and much more insulation.

Even then they may not be able to be heated with a heat pump alone, so we are suggesting a combined heat pump-hydrogen boiler system. The boiler would only be used occasionally, heating the house from cold or during a particularly cold winter.

RM: We certainly know about under-insulated houses in New Zealand. Is your committee proposing that owners be forced to insulate their homes?

JK: We’d like to see the Government starting with social housing, and then looking at the carrots and sticks for private houses, which are 60% of the housing stock. For example, people improving their house within two years of purchase could get a rebate on the stamp duty. If people are going to be heating their house with electricity and potentially hydrogen, that is going to cost more than gas. Whereas electric cars are going to be cheaper.

So we’re saying we need to think about how we’re going to redistribute these costs. There will be elderly people and low-income families with higher heating costs who don’t drive. Therefore, we need to look at taxing transport to subsidize heating and insulation. You’ve got to be thinking now about how to make this a fair transition.

RM: To refit every building in Britain could easily take thirty years.

JK: Yes, so you need to start now. The previous Chancellor proposed that no new homes would be connected to the gas grid from 2025. That’s a start. Actually, as well as higher insulation standards, we also need higher ventilation standards, because some of the early sealed homes have become damp with poor indoor air quality. And we spend more time at home, living longer and working from home.

Historically, we’ve had about 2000 heat-related summer deaths; by 2050 we expect 7000. Currently, there is a review of building safety, focussing on fire because of the Grenfell Tower fire, but we also need to think about safety in terms of heat and cold: far more people die in their homes from heat or cold than from fire.

RM: In New Zealand there’s been a debate about how much power the Climate Change Commission should have – it looks like it will be advisory only.

JK: We have this interesting split. The mitigation committee sets carbon budgets, which are then agreed by Parliament, and we monitor the Government’s progress against delivery. The adaptation committee provides advice on risks, but the Government puts together a plan and we review their progress against their own plan and their own targets.

RM: And on the mitigation side, your recent report says that the Government has only achieved one out of twenty-five actions that were needed last year.

JK: True, but on the adaptation side they haven’t achieved any of them.

RM: So what’s the comeback if they don’t achieve the targets?

JK: Nothing at the moment, everyone is distracted! But soon we will be asking the Government and the Environmental Audit and the BEIS (Business, Energy, and Industrial Strategy) Committees of Parliament what new policies are proposed. These Committees are very active in calling the Government to account. They can summon Ministers and will typically base their inquiry on our reports. Also, the Government must provide an official response to our report.

RM: Your chair, Lord Deben, said ministers could be sued in court if the failure to act continued.

JK: It’s unlikely that we would do that, but there are plenty of green organisations who could call for a judicial review.

RM: On the whole, do you feel that this steady pressure over a long period, within this framework, will be sufficient?

JK: We need the help of the public and of green groups like Extinction Rebellion and of the press. More and more of the press are now on our side. The BBC has increased their number of environment correspondents from two to something like eleven. It’s for the same reason that the Conservative Party has become committed to the net zero target: young people are very concerned about this, while BBC viewers have an average age of 55 and Conservative Party members have an average age of 69 – well roughly, I probably haven’t got the numbers quite right! So they have to appeal to younger voters and younger viewers. It’s crucial that this interest from young people continues. Greta Thunberg and Extinction Rebellion have been very helpful.

RM: How significant is the Government’s recent net zero 2050 target?

JK: We were asked to advise on when the UK could reach net zero. We said 2050 was the right date and that it was unlikely we could do it any earlier. But we also said, legislating the target is nice, but there’s no point unless you’re going to do something about it. So we got the legislation, but the change in leadership and parliamentary recess has brought a pause.

RM: The existing carbon budgets already look difficult to achieve.

JK: They are. The 4th budget [51% reduction on 1990 levels by 2025] might be achieved, the 5th [57% reduction by 2030] looks hard. However, the most cost-effective way to reduce emissions now lies below the 4th and 5th carbon budgets. So it would be cheaper to cut even faster. Now that we’ve made progress in decarbonising electricity, we should be accelerating electric vehicle uptake much faster.

RM: The UK has had quite large incentives and taxes on transport, but they haven’t had the effect I would have expected.

JK: Yes. But this year the figures are looking better – overall car sales are down, people are walking and cycling more, but pure electric sales are up. I fear that’s probably because of financial uncertainty over Brexit.

Electric vehicle market share in the UK was 1.9% in 2017 and 2.5% in 2018, which was 11th highest in the world. The UK has about 34 million cars on the road.

RM: My concern is that the incentives are designed based on modeling work which is quite uncertain.

JK: Our advice has been that incentives should have been larger and gone on for longer. Instead they were cut overnight last year, without telling the automotive industry. My view is that their scale and duration should be announced and fixed, and that they’ve got to be used alongside the EU approach of clear, tough regulations restricting the sale of high-emission cars.

RM: There have been headwinds, like dieselgate and the unreliability of fuel consumption figures. You’re also up against consumer behaviour. People would like to buy the biggest car they can afford.

JK: That’s the problem. When we started, even when I did the 2006 King report on decarbonising transport, we still had the fuel price escalator. That was really driving people to buy more fuel-efficient cars. The incentives of zero road tax (that is, zero vehicle excise duty), and a really large registration fee on high-emitting vehicles, they were all effective. Then towards the end of the Coalition government, George Osborne removed the fuel price escalator. Combined with the increased fuel efficiency of all vehicles, people have realised they can now afford to buy a bigger car. And overall fleet improvements have slowed.

RM: Was there any public backlash against all of these taxes and incentives?

JK: There was a bit of a whinge. But because we’d had it for a long time and the annual increase was small, it wasn’t like the gilet jaunes. The problem now is, how do you put it back in?

RM: I was amazed to read that industrial emissions have fallen from 121 to 66 million tonnes. Have you simply moved polluting industry to China?

JK: We have. But Sam Fankhauser’s analysis at the LSE shows that this is mostly due to the cost of labour and land and not green taxes. It would have happened anyway. Unlike Germany, the UK doesn’t subsidise electricity for industry. That’s related to our energy rather than our climate change policy.

RM: On the other hand, at least those industries are generating wealth and producing something useful, unlike people driving around in fossil-fueled cars. Shouldn’t there be a distinction between production and consumption?

JK: The energy-intensive industries do get a discount to compensate for the carbon price being effectively higher in the UK than in Europe. But the rules around who qualifies don’t seem entirely fair. Parts of the ceramic industry don’t qualify, but they are a very intensive industry and are a heritage industry. My understanding is that large brickmakers qualify, small ones don’t.

The long-term solution for industry is carbon capture and storage, CCS, focusing on industrial clusters around steel and cement. We have plenty of places to store CO2, in old oil wells. These clusters would also incentivise the start of the hydrogen economy. The market isn’t going to make that happen.

RM: Your report also says that Britain will need BECCS (Bio-energy with carbon capture and storage) by 2030. That’s very soon, considering BECCS hardly exists yet.

JK: Drax does have a small demonstration plant, but there’s nowhere for them to store the CO2. The Government says they’d like to encourage capture capture and use – but what will all this CO2 be used for? Fizzy drinks and greenhouses? There’s lots of talk of synthetic fuels, but the energy required is enormous. Maybe for aviation, but it’s the last thing you’d try.

For large-scale industrial uses by 2050, the technology needs to be things we know about and are ready for demonstration now. Even the restrained hydrogen economy we need by 2050 – where you do all the energy efficiency you can first, then electrify everything possible, and only turn to hydrogen and synthetic fuels as a last resort – even that involves energy twice the size of today’s electricity system. So get a move on, guys!

I’m a champion for the offshore wind sector as part of the industrial strategy. You can take an offshore wind farm from permitting to operation in three years. So far, the Government hasn’t endorsed the industry’s own target of 50 GW by 2050. But for net zero we might even need 100 GW. Nuclear for baseload would be nice, but there’s a risk we might not get it because of the costs and timescales, whereas offshore wind is proven.

RM: Do you think Britain will start building onshore wind again?

JK: We won’t build a lot, for lack of space, but I hope we will start building it again. the Government is forcing communities that don’t want fracking, to have fracking, and yet communities that say they would like onshore wind are not being allowed to have it.

RM: Has agriculture been a focus of attention in the UK? Your agriculture emissions are similar to New Zealand’s, 49 Mt CO2e.

JK: Yes, we have a lot of dairy and beef. It hasn’t been a focus yet, but it’s going to be really interesting as we move away from the Common Agricultural Policy. Existing subsidies based on production encourage fertiliser use and overstocking. The Environmental Land Management Scheme is in preparation and we want to see it encourage low-carbon management practices, peat restoration as a carbon sink, and vastly more tree planting also for flood control. Overall our farming is uneconomic; about 50% of farm income is from the CAP.

RM: Can landowners be paid to plant trees?

JK: That’s what we’d like to see. So far everything in the agriculture and land use sector has been voluntary. There is also no system to check that farmers are doing what they say they are in terms of soil improvement. The new ‘Public Money for Public Goods’ system could be be quite destabilising. The worry, therefore, is that the Government won’t do anything radical, and will keep handing out subsidies. And although there are relatively few farmers, they are very effective lobbyists. With all the scares that there won’t be any food on the first of November, the farmers are in a strong position.

RM: Let’s turn to international aviation. In Britain people love city breaks and holidays in the sun. Would there be any public appetite for restraining the growth of air travel?

JK: It’s a problem, and young people like those short breaks. Our analysis suggests that for the target of an 80% reduction in emissions by 2050, you could still get 60% growth in aviation. Under net zero you can’t get much growth. It will have to be priced. The main contribution is long-haul flights, especially for holidays and to see friends and family.

RM: On adaptation, your committee said that the Government’s preparations were like Dad’s Army.

JK: That was Lord Deben! I wouldn’t have put it quite like that.

We have an agreed climate change risk analysis for the country. And yet the Government publishes a national adaptation plan that doesn’t even address what it has agreed are the risks the country faces. It has the power to ask critical infrastructure industries about their adaptation plans. At first it was compulsory. More recently it’s been voluntary and many sectors didn’t report.

Interestingly, regarding the Whaley Bridge Dam incident, that type of reservoir had been flagged in the risk assessment as particularly sensitive to heavy rainfall and hot weather. It’s unreinforced, old concrete, in hot sun followed by cold water. The concrete was already cracking and under stress. The owners have never reported their adaptation plans and are not on the list for the future. Another similar reservoir failed in 2007.

On 1 August 2019 part of the spillway of the Whaley Bridge Dam, Derbyshire, was dislodged. 1500 residents were evacuated amidst fears that the dam, constructed in 1840, could collapse. The dam and reservoir will now be completely rebuilt. (Source)

Many telecom companies have not reported, and their networks have failed during floods. The systems have complex interdependencies that previous floods have demonstrated that parts of the ICT sector didn’t recognise. There are chains of guarantees and penalties, but this has led to complacency.

Now that the Met Office can provide probabilities on extreme weather on quite a fine scale, there is an opportunity for proper scenario planning. But because reporting is voluntary, we don’t actually know what analysis they are doing. It’s clear, though, that they’re not preparing for 2ºC and 4ºC, and the risk of 4ºC is still very high.

We know that our food supply chain is very sensitive to climate change overseas. Last year we had the ‘iceberg lettuce crisis’ due to a hot summer in Spain; we had the ‘avocado crisis’ a year or two earlier. Those are just indications of the risk. We said it was a risk, the Government said the market would sort it out. The committee thinks adaptation really does need strong leadership from government.

Also, they should be helping businesses understand what climate scenarios they should be preparing for, especially small businesses. If they do leave it to the market, we need compulsory climate risk disclosure. But that only covers large companies.

Another problem is that the Department of Food and Rural Affairs, which is in charge of adaptation, is nowhere near the top in terms of the power hierarchy in the civil service. DEFRA’s influence over business, housing and so on is small.

This summer we’ve seen that the rail industry, which claims to be very well prepared for climate change, clearly isn’t; parts of our water infrastructure are not prepared; we’ve seen people very uncomfortable in their homes. We’ve now got the NHS to agree to monitor temperatures in hospitals. We’ve got lots of 1970s hospitals with huge plate glass windows, bolted shut, with the radiators on. The NHS spends one to two billion a year dealing with heat-related conditions – and part of it’s due to their hospitals!

The day after this interview took place, there was a widespread power cut in the UK. A routine lightning strike, which the system should have been able to cope with, caused a gas-fired and a wind-powered power station to drop out nearly simultaneously. For reasons still under investigation, this caused the frequency to become unstable, requiring the National Grid operator to cut power to about one million people all over the UK. Knock-on effects to many train operators are also being investigated. In the photo, a staff member guides train passengers with torch light at Clapham Junction station in London. (Source)

RM: What has your experience been like on the Climate Change Committee?

JK: It’s great fun! It’s really, really interesting. It’s a team of twenty-five to thirty, mostly young economists, engineers, climate scientists. The quality of analysis and the quality of discussion on the committee is very high. I do think the committee and secretariat should have more people from industry. We do now have a behavioural economist which I think is important. The net zero report has a pie chart showing that the things that can be done with technology are not much more than a third. The majority of what needs to be done needs people to cooperate.

RM: The way people live is what they pick up from the world around them.

JK: The elephant in the room is that the economy is based on increasing consumption. Continually trying to drive endless GDP growth in the developed and rich world is not only a bad example to the rest of the world, it’s unsustainable.

We need a better way to measure progress and quality of life in developed economies.


Postscript added 22 August. The UK Parliament’s committee on science and technology has now responded to the CCC’s report. (Read their report or the summary in the Guardian.) Their recommendations are for the Government to

  • prepare a strategy to decarbonise heating
  • incentivise home efficiency improvements
  • reduce transport emissions by bringing forward the date to end the sale of petrol and diesel vehicles to 2035 at the latest; extend incentives and charging infrastructure; and decrease reliance on private cars.
  • support onshore wind and solar and review solar buy-back prices
  • maintain, but not expand, nuclear power
  • incentivise greenhouse gas removal and CCS
  • make Net Zero 2050 a principal objective of the energy regulator
  • support individuals and local councils to achieve Net Zero

If you can make it here… Mike Joy goes to New York

The New York Times, that is.

Today the incomparable Mike Joy, New Zealand freshwater ecologist and researcher at the Institute for Governance and Policy Studies, Victoria University, has told the story of dairy farming in New Zealand to the New York Times’s 4 million subscribers and 140 million online readers.

Read the article: The Incontinent Cows of Middle-earth.

There’s a particular focus on the continuing expansion of intensive dairying on unsuitable land in Canterbury, involving high levels of irrigation and synthetic fertiliser with well-known damaging effects on water quality and human health.

And of course, there’s a Lord of the Rings hook too.

Sit back and watch the fun begin.