Climate explained: how much of the world’s energy comes from fossil fuels and could we replace it all with renewables?

Shutterstock/Tsetso Photo

By Robert McLachlan

How are fossil fuels formed, why do they release carbon dioxide and how much of the world’s energy do they provide? And what are the renewable energy sources that could replace fossil fuels?

Fossil fuels were formed over millions of years from the remains of plants and animals trapped in sediments and then transformed by heat and pressure.

Most coal was formed in the Carboniferous Period (360–300 million years ago), an age of amphibians and vast swampy forests. Fossilisation of trees moved enormous amounts of carbon from the air to underground, leading to a decline in atmospheric carbon dioxide (CO₂) levels — enough to bring the Earth close to a completely frozen state.

This change in the climate, combined with the evolution of fungi that could digest dead wood and release its carbon back into the air, brought the coal-forming period to an end.

Oil and natural gas (methane, CH₄) were formed similarly, not from trees but from ocean plankton, and over a longer period. New Zealand’s Maui oil field is relatively young, dating from the Eocene, some 50 million years ago.

Burning buried sunshine

When fossil fuels are burnt, their carbon reacts with oxygen to form carbon dioxide. The energy originally provided by the Sun, stored in chemical bonds for millions of years, is released and the carbon returns to the air. A simple example is the burning of natural gas: one molecule of methane and two of oxygen combine to produce carbon dioxide and water.

CH₄ + 2 O₂ → CO₂ + 2 H₂O

Burning a kilogram of natural gas releases 15kWh of energy in the form of infrared radiation (radiant heat). This is a sizeable amount.

To stop continuously worsening climate change, we need to stop burning fossil fuels for energy. That’s a tall order, because fossil fuels provide 84% of all the energy used by human civilisation. (New Zealand is less reliant on fossil fuels, at 65%.)

Wind turbines on farm land in New Zealand
Wind energy is one of the renewable sources with the capacity to scale up. Shutterstock/YIUCHEUNG

There are many possible sources of renewable or low-carbon energy: nuclear, hydropower, wind, solar, geothermal, biomass (burning plants for energy) and biofuel (making liquid or gaseous fuels out of plants). A handful of tidal power stations are in operation, and experiments are under way with wave and ocean current generation.

But, among these, the only two with the capacity to scale up to the staggering amount of energy we use are wind and solar. Despite impressive growth (doubling in less than five years), wind provides only 2.2% of all energy, and solar 1.1%.

The renewables transition

One saving grace, which suggests a complete transformation to renewable energy may be possible, is that a lot of the energy from fossil fuels is wasted.

First, extraction, refining and transport of fossil fuels accounts for 12% of all energy use. Second, fossil fuels are often burnt in very inefficient ways, for example in internal combustion engines in cars. A world based on renewable energy would need half as much energy in the first place.

The potential solar and wind resource is enormous, and costs have fallen rapidly. Some have argued we could transition to fully renewable energy, including transmission lines and energy storage as well as fully synthetic liquid fuels, by 2050.

One scenario sees New Zealand building 20GW of solar and 9GW of wind power. That’s not unreasonable — Australia has built that much in five years. We should hurry. Renewable power plants take time to build and industries take time to scale up.

Other factors to consider

Switching to renewable energy solves the problems of fuel and climate change, but not those of escalating resource use. Building a whole new energy system takes a lot of material, some of it rare and difficult to extract. Unlike burnt fuel, metal can be recycled, but that won’t help while building a new system for the first time.

Research concluded that although some metals are scarce (particularly cobalt, cadmium, nickel, gold and silver), “a fully renewable energy system is unlikely to deplete metal reserves and resources up to 2050”. There are also opportunities to substitute more common materials, at some loss of efficiency.

Engineers working on a wind turbine
Building a new system will require energy and resources. Shutterstock/Jacques Tarnero

But many metals are highly localised. Half the world’s cobalt reserves are in the Democratic Republic of Congo, half the lithium is in Chile, and 70% of rare earths, used in wind turbines and electric motors, are in China.

Wasteful consumption is another issue. New technologies (robots, drones, internet) and economic growth lead to increased use of energy and resources. Rich people use a disproportionate amount of energy and model excessive consumption and waste others aspire to, including the emerging rich in developing countries.

Research analysing household-level emissions across European countries found the top 1% of the population with the highest carbon footprints produced 55 tonnes of CO₂-equivalent emissions each, compared to a European median of 10 tonnes.

Scientists have warned about consumption by the affluent and there is vigorous debate about how to reduce it while preserving a stable society.

One way of turning these questions around is to start from the bottom and ask: what is the minimum energy required for basic human needs?

One study considered “decent living” to include comfortable housing, enough food and water, 10,000km of travel a year, education, healthcare and telecommunications for everyone on Earth — clearly not something we have managed to achieve so far. It found this would need about 4,000kWh of energy per person per year, less than a tenth of what New Zealanders currently use, and an amount easily supplied by renewable energy.

All that carbon under the ground was energy ripe for the picking. We picked it. But now it is time to stop.

This article is republished from The Conversation under a Creative Commons license. Read the original article. Climate explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change. If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz.

3 thoughts on “Climate explained: how much of the world’s energy comes from fossil fuels and could we replace it all with renewables?

  1. Excellent “state of the nation” synopsis with numbers; deserves a wider audience.

    We need to be installing solar on rooftops at home and at work Men won’t be weaned from their sexy cars easily so we will need more electricity — better produced on site than transmitted from the South Island.

    I remain dubious of heavy electric aircraft for now but necessity is the mother of invention so never say never. I can see hydrogen being important so surplus electricity won’t be wasted. Not sure about burning hydrogen at high altitudes though – can produce oxides of nitrogen; fuel cells seem a better option.

    We may need to find a way of mining the metal nodes on the ocean floor too, without destroying it.

    I’m not going to live long enough to see the results of this vast experiment with the planet, but I’m not optimistic. I see no signs whatsoever the wealthy are reducing their emissions or have any intentions of doing so.

  2. I would like to understand the breakdown of energy used per capita – how much results from imported items, dairy products, meat, manufactured items, driving a fossil fuelled car. Those who consume relatively little, don’t drive a car, eat Vegan, have well insulated homes, use waste wood to heat their houses during winter, presumably are the ones that can easily live under 4000 kw per year. We use about 7,000kw of electricity for a family of 4.

    1. Good question Paul. If you follow the link in the next post to the Stats NZ breakdown of household greenhouse gas emissions, that gives some idea. They are working on the distribution too, so we will be able to see the difference between high and low emitting households. Transport is a big chunk of household energy use, it would be about 8000 kWh a year per person from driving and 4000 from flying. A recent PhD thesis from Massey looked at the lifecycle emissions of houses – even with zero-emission electricity, the embodied energy of the construction, and the size of the house, makes a big difference. The ultra low-energy requirement study allowed 15 m^2 of living space per person, 20ºC year round, which is already better than what many people in NZ have now.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s